1) Find the component form of the vector \vec{v} and sketch the vector with its initial point at the origin.

2) Find the component form of the vectors \vec{u} and \vec{v} whose initial and terminal points are given. Show that \vec{u} and \vec{v} are equivalent.
$\vec{u}:(3,2),(5,6)$
$\vec{v}:(1,4),(3,8)$
3) The initial and terminal points of vector \vec{v} are $(4,-6)$ and $(3,6)$ respectively. Write the vector as the linear combination of the standard unit vectors \mathbf{i} and \mathbf{j}.
4) Find each scalar multiple of $\vec{v}=\langle-2,3\rangle$.
a) $2 \vec{v}$
b) $-3 \vec{v}$
c) $0 \vec{v}$
d) $-\frac{1}{2} \vec{v}$
5) Find the vector \vec{v} where $\vec{u}=\langle 2,-1\rangle$ and $\vec{w}=\langle 1,2\rangle$.
a) $\vec{v}=\frac{3}{2} \vec{u}$
b) $\vec{v}=\vec{u}+\vec{w}$
c) $\vec{v}=\vec{u}+2 \vec{w}$
d) $\vec{v}=5 \vec{u}-3 \vec{w}$
6) The vector $\vec{v}=\langle-1,3\rangle$ and its initial point is (4,2), find the terminal point.
7) Find the magnitude of \vec{v} :
a) $\vec{v}=7 \mathbf{i}$
b) $\vec{v}=\langle 12,-5\rangle$
c) $\vec{v}=-10 \mathbf{i}+3 \mathbf{j}$
8) Find the unit vector in the direction of \vec{v} and verify that it has a length of 1 .
a) $\vec{v}=\langle 3,12\rangle$
b) $\vec{v}=\left\langle\frac{3}{2}, \frac{5}{2}\right\rangle$
9) Given that $\vec{u}=\langle 1,-1\rangle$ and $\vec{v}=\langle-1,2\rangle$ find the following:
a) $\|\vec{u}+\vec{v}\|$
b) $\left\|\frac{\vec{u}+\vec{v}}{\|\vec{u}+\vec{v}\|}\right\|$
10) Find $\vec{u}+\vec{v}$. Then demonstrate the triangle inequality using the vectors $\vec{u}=\langle 2,1\rangle$ and $\vec{v}=\langle 5,4\rangle$.
11) Find vector \vec{v} with a magnitude of 2 and the same direction as $\vec{u}=\langle\sqrt{3}, 3\rangle$
12) Find the component form of \vec{v} given that its magnitude is equal to 2 and the angle it makes with the positive x-axis is $\theta=150^{\circ}$.
13) Find the component form of $\vec{u}+\vec{v}$ given that $\|\vec{u}\|=1,\|\vec{v}\|=3$ and the angles that \vec{u} and \vec{v} make with the positive x-axis is $\theta_{u}=0^{\circ}$ and $\theta_{v}=45^{\circ}$.
14) Find a and b such that $\vec{v}=a \vec{u}+b \vec{w}$, where $\vec{u}=\langle 1,2\rangle, \vec{w}=\langle 1,-1\rangle$ and $\vec{v}=\langle 2,1\rangle$
15) Find a unit vector parallel to and perpendicular to the graph $f(x)=x^{2}$ at the point $(3,9)$.
16) Three forces with magnitudes of 75 pounds, 100 pounds, and 125 pounds act on an object at angles of $30^{\circ}, 45^{\circ}$, and 120°, respectively, with the positive x-axis. Find the direction and magnitude of the resultant force.
17) Use the figure below to determine the tension in each cable supporting the given load.

